Parathyroid-specific epidermal growth factor-receptor inactivation prevents uremia-induced parathyroid hyperplasia in mice.
نویسندگان
چکیده
BACKGROUND In chronic kidney disease (CKD), parathyroid hyperplasia contributes to high serum parathyroid hormone (PTH) and also to an impaired suppression of secondary hyperparathyroidism by calcium, vitamin D and fibroblast growth factor 23 (FGF23). In rats, systemic inhibition of epidermal growth factor receptor (EGFR) activation markedly attenuated uremia-induced parathyroid hyperplasia and vitamin D receptor (VDR) loss, hence restoring the response to vitamin D. Therefore, we propose that parathyroid-specific EGFR inactivation should prevent CKD-induced parathyroid hyperplasia. METHODS A dominant-negative human EGFR mutant, which forms non-functional heterodimers with full-length endogenous EGFR, was successfully targeted to the parathyroid glands (PTGs) of FVB/N mice, using the 5' regulatory sequence of the PTH promoter. The parathyroid phenotype and serum chemistries of wild-type (WT) and transgenic mice were examined after 14 weeks of either sham operation or 75% renal mass reduction (NX). RESULTS Both genotypes had similar morphology and body weight, and NX-induction enhanced similarly serum blood urea nitrogen compared with sham-operated controls. However, despite similar serum calcium, phosphate and FGF23 levels in NX mice of both genotypes, parathyroid EGFR inactivation sufficed to completely prevent the marked increases in PTG enlargement, serum PTH and in parathyroid levels of transforming growth factor-α, a powerful EGFR-activator, and the VDR reductions observed in WT mice. CONCLUSION In CKD, parathyroid EGFR activation is essential for parathyroid hyperplasia and VDR loss, rendering this transgenic mouse a unique tool to scrutinize the pathogenesis of parathyroid and multiple organ dysfunction of CKD progression unrelated to parathyroid hyperplasia.
منابع مشابه
A critical role for enhanced TGF-alpha and EGFR expression in the initiation of parathyroid hyperplasia in experimental kidney disease.
The parathyroid hyperplasia secondary to kidney disease is associated with enhanced expression of the growth promoter transforming growth factor-alpha (TGF-alpha). TGF-alpha stimulates growth through activation of its receptor, the epidermal growth factor receptor (EGFR), normally expressed in the parathyroid glands. Because enhanced coexpression of TGF-alpha and EGFR causes aggressive cellular...
متن کاملRole of phosphorus in the pathogenesis of secondary hyperparathyroidism.
Secondary hyperparathyroidism (SH) and hyperplasia of the parathyroid glands (PTG) are universal complications in patients with CRF. In early renal failure, reduction in serum calcitriol and moderate decreases in ionized calcium contribute to greater synthesis and secretion of PTH. As renal disease progresses, a reduction in parathyroid expression of vitamin D receptor and calcium receptor rend...
متن کاملVitamin D receptor and analogs.
In chronic kidney disease (CKD), high circulating levels of parathyroid hormone (PTH) cause osteitis fibrosa, bone loss, and cardiovascular complications that increase morbidity and mortality. Impaired production of 1,25-dihydroxyvitamin D (calcitriol), the hormonal form of vitamin D, is a major contributor to the generation and maintenance of parathyroid hyperplasia and increased synthesis and...
متن کاملNodular parathyroid growth: role of vitamin D resistance.
The parathyroid gland is a low turnover, discontinugrowth [6]. Similar to parathyroid adenomas in humans, ously replicating tissue composed of cells that rarely unthese mice slowly develop large hyperplastic glands and dergo mitoses [1, 2]. The quiescent parathyroid cells, in some cases adenomatous glands. However, in nodular however, retain their potential to divide in response to hyperplasia ...
متن کاملThe fibroblast growth factor receptor mediates the increased FGF23 expression in acute and chronic uremia.
Serum FGF23 is markedly elevated in chronic kidney disease and has been associated with poor long-term outcomes. FGF23 expression is increased by activation of the FGF receptor 1 (FGFR1) in rats with normal renal function and in vitro in bone-derived osteoblast-like cells. We studied the regulation of FGF23 by FGFR1 in vivo in acute and chronic uremia in mice and rats. Folic acid-induced acute ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
دوره 30 3 شماره
صفحات -
تاریخ انتشار 2015